Ab initio Calculations for Ground States of $CH_2Li^$ and CH_2Be^*

Ugo Lamanna and Marco Maestro

Dipartimento di Chimica dell'Università di Bari, Italy

Received October 1, 1973/July 16, 1974

The ground state of CH_2Li^{-} and CH_2Be molecules has been investigated by an SCF calculation using a contracted Gaussian basis set. Only for the second system a bound state with respect to the ground states of the molecular fragments has been found.

Key words: CH_2Li^- , ground states of $-CH_2Be$, ground states of ~

Introduction

It has been suggested [1] on the basis of experience made in the field of geminal organometallic compounds, that a carbanion may be stabilized by an adjacent metal atom through formation of a π -bond. As an initial stage of an investigation in this direction, we have performed SCF calculations on the simplest systems of this kind *i.e.* CH₂Li⁻ and CH₂Be. The main aim was to verify if these compounds can present a ground state which results to be bound with respect to the most likely decomposition products.

Since no experimental result on the possible geometry of these systems was known, an energy minimization procedure has been performed on all involved geometrical parameters. In order to limit the range of the trials, a CNDO calculation on the same molecules has been previously carried out. As possible decomposition products, CH_2 and CH_2^- , Li^- , and Be^+ ions, besides Li and Be have been considered. For these systems only the ground state has been calculated, except for CH_2 and CH_2Be , for which two states $({}^{1}A_1$ and ${}^{3}B_1)$ have been considered. The geometrical minimization has been carried out also for CH_2 and CH_2^- states. In order to check the goodness of the chosen basis, a calculation for the CH_3^- molecule ground state has also been performed.

Basis Set and Preliminarly Calculations

Since the atoms involved have already been extensively studied [2, 3] the choice of the basis does not present any problem. A contracted basis of Gaussian orbitals has been chosen; in particular for Li, Be, and C atoms the four s-type atomic orbitals employed, are constructed by a linear combination of 3, 3, 2, and 3 primitive GTO's respectively [2] [short notation (3, 3, 2, 3)]. For the C atom the basis is completed with two contracted p-type atomic orbitals (3, 3). For the

^{*} Work performed with the C.N.R. financial aid.

	Li		Be		c		Н	1
	Exp.	Coeff.	Exp.	Coeff.	Exp.	Coeff.	Exp.	Coeff.
(s. 1)	3184.4671 480.51266 108.86325	0.02156739 0.16658948 0.87236365	6261.0585 932.25914 209.70133	0.02146629 0.16536998 0.87375771	16371.074 2439.1239 545.16766	0.02120912 0.16414017 0.87510685	19.24060 2.89915 0.65341	0.032808 0.231208 0.817238
(s.2)	30.289479 9.6415137 3.3915559	0.10008940 0.30904943 0.6666616	58.159285 18.468874 6.4351438	0.09445342 0.29979507 0.68022669	151.00382 47.80399 16.43566	0.08646063 0.28645409 0.69939809	0.17758	1.00000
(s. 3)	1.2494133 0.46733513	0.7176500 0.31831711	2.3964825 0.95005883	0.70275612 0.33002620	5.9491182 2.2158781	0.72521862 0.31046045		
(s.4)	0.07980199 0.06613627 0.02495205	-0.05476751 0.69833916 0.39372345	0.18366835 0.07393677 0.03324251	0.43979949 0.48923130 0.1281360	0.56937124 0.21811018 0.0884325	0.40210571 0.51738733 0.14631886		
(p. 1)	4.802 1.076 0.311	0.04049609 0.24279555 0.81105297	8.356 1.883 0.576	0.04049609 0.24279555 0.81105297	24.178811 5.7634925 1.7994821	0.04081133 0.23370981 0.81589670	1.00000	1.00000
(p. 2)	0.0877 0.0696 0.0230	0.42352267 0.49704234 0.20556999	0.208 0.0779 0.0296	0.42352267 0.49704234 0.20556999	0.62738153 0.22321395 0.07961811	0.44674694 0.50433069 0.18234560		

^a For the references from which the most part of these data have been taken, see text.

Table 1. Atomic basis set^a

104

U. Lamanna and M. Maestro

H atom, we have chosen a (3, 1) s basis used by Neumann and Moskowitz [4] which seems to be comparable in extension to the above one.

Since the possibility of bound ground states in CH_2Li^- and CH_2Be , seems to be related to the existence of some degree of sharing of *p* electrons to bond orbitals, an extension of the basis with *p* AO's is appropriate also for H, Li, and Be atoms.

For the H atom, we have made the same basis choice as Neumann and Moskowitz [4], *i.e.* $\zeta_p = 1.0$; for Li and Be *p* exponents, we have applied an extrapolation procedure based on the variation of *s* and *p* exponents along the first row of the periodic system, as it is exhibited by Huzinaga results. A similar procedure has been used by Kaufman and Sachs [5, 6] in their work on HeLiH and HeBeH₂; the basis set reported in Table 1 has been used.

The minimization of the energy with respect to all geometrical parameters is required, as already said, by the lack of experimental information. Moreover, particularly in the case of CH_2Li^- , the optimal geometry can indicate the existence of a " π -stabilization" in comparison, for instance, with the very similar molecule CH_3^- which is known [7] to be non planar in the ground state.

Since the chosen basis is rather limited, one can have some doubt about the possibility of a correct prediction of the molecular geometries; therefore we have tested the basis by searching for the optimum geometry of CH_3^- . The results are the following:

$$E = -39.45363$$
 a.u., C-H = 2.14 a.u., φ (out of plane angle) = 26°;

it can be seen that they compare rather favourably with those of Kari and Csizmadia [7], obtained by using different extended basis sets; the best results by these authors are in fact:

$$E = -39.50810; C-H = 2.14; \varphi = 22.5^{\circ}.$$

Since we have not found reliable data for C–Be and C–Li equilibrium distances in the literature, we decided to carry out a preliminary calculation by the CNDO method. The results for these quantities were 3.25 and 2.66 a.u. for C–Li and C–Be respectively. In both cases we obtained a planar configuration.

Results and Discussion

In Table 2 the main results of the calculations are reported. The most striking aspect is that for CH_2Be a triplet ground state has been found in analogy with CH_2 .

Our results for CH₂ are comparable with those of the literature [8–10]. Some comparisons are reported in Table 3. For the ${}^{1}A_{1}$ states of CH₂Be and CH₂Li⁻, from the CNDO calculations the following optimum geometries have been obtained:

$$HCH = 112^{\circ}, C-H = 2.12 \text{ a.u.}, C-Be = 2.66 \text{ a.u.}$$

 $HCH = 105^{\circ}, C-H = 2.17 \text{ a.u.}, C-Li = 3.25 \text{ a.u.}$

The geometry is planar in both cases.

In Table 4 the orbital energies and coefficients for the relevant orbitals for $CH_2Be\,^3B_1$ and 1A_1 states are reported. The most interesting aspect is the structure of the π -type orbital that appears to have, in both states, a negative energy. This fact, and the sign of the coefficients seems to suggest some stabilization effect

(2s)(2s)2(2s)2(2s)2(2a)2(3a1)2(1b2)22(2a1)2(3a1)(1b2)2(1b1)	${}^{2}S$ ${}^{1}S$ ${}^{1}S$ ${}^{2}S$ ${}^{1}A_{1}$ ${}^{3}B$	C-H = 2.07	$\alpha = 105^{\circ}$	- 7.4322474ª - 7.394014 - 14.572461ª - 14.26356 - 38.86954 20.92209
$(2s)^{2}$ $(2s)^{2}$ $(2s)^{2}$ $(2a_{1})^{2}(3a_{1})^{2}(1b_{2})^{2}$ $^{2}(2a_{1})^{2}(3a_{1})(1b_{2})^{2}(1b_{1})$	${}^{1}S$ ${}^{1}S$ ${}^{2}S$ ${}^{1}A_{1}$ ${}^{3}B$	C-H = 2.07	$\alpha = 105^{\circ}$	- 7.394014 - 14.572461ª - 14.26356 - 38.86954
$(2s)^{2}$ $(2s)^{2}(2a_{1})^{2}(3a_{1})^{2}(1b_{2})^{2}$ $^{2}(2a_{1})^{2}(3a_{1})(1b_{2})^{2}(1b_{1})$	${}^{1}S$ ${}^{2}S$ ${}^{1}A_{1}$ ${}^{3}B$	C-H = 2.07	$\alpha = 105^{\circ}$	- 14.572461ª - 14.26356 - 38.86954
$(2s)2(2a_1)2(3a_1)2(1b_2)22(2a_1)2(3a_1)(1b_2)2(1b_1)$	${}^{2}S$ ${}^{1}A_{1}$ ${}^{3}B$	C-H = 2.07	$\alpha = 105^{\circ}$	- 14.26356 - 38.86954
$(2a_1)^2(3a_1)^2(1b_2)^2$ $(2a_1)^2(3a_1)(1b_2)^2(1b_1)$	${}^{1}A_{1}$	C-H = 2.07	$\alpha = 105^{\circ}$	- 38.86954
$(2a_1)^2(3a_1)(1b_2)^2(1b_1)$	3 ค์	C II 202	1000	20.00000
	D_1	$C - \Pi = 2.02$	$\alpha = 130^{\circ}$	- 38.92300
$(2a_1)^2(3a_1)^2(1b_2)^2(1b_1)$	$^{2}B_{1}^{2}$	C - H = 2.06	$\alpha = 100^{\circ}$	- 38.82455
$(2a_1)^2(3a_1)^2(4a_1)^2(1b_2)^2(1b_1)^2$	${}^{1}A_{1}$	C - H = 2.06		-46.29361
	-	C - Li = 3.40	$\alpha = 105^{\circ}$	
$(2a_1)^2(3a_1)^2(4a_1)^2(1b_2)^2(1b_1)^2$	${}^{1}A_{1}$	C - H = 2.04		- 53.50059
	-	C - Be = 2.83	$\alpha = 113^{\circ}$	
$(2a_1)^2(3a_1)^2(4a_1)^2(5a_1)(1b_2)^2(1b_1)$	${}^{3}B_{1}$	C - H = 2.04		- 53.57559
		C - Be = 3.12	$\alpha = 111^{\circ}$	
2	$\frac{(2a_1)^2 (3a_1)^2 (4a_1)^2 (1b_2)^2 (1b_1)^2}{(2a_1)^2 (3a_1)^2 (4a_1)^2 (1b_2)^2 (1b_1)^2}$ $\frac{(2a_1)^2 (3a_1)^2 (4a_1)^2 (1b_2)^2 (1b_1)^2}{(2a_1)^2 (3a_1)^2 (4a_1)^2 (5a_1) (1b_2)^2 (1b_1)}$ $\frac{1}{H_{n_1}}$	$\frac{(2a_1)^2 (3a_1)^2 (4a_1)^2 (1b_2)^2 (1b_1)^2}{(1b_2)^2 (1b_1)^2} \frac{(1a_1)^2}{(1a_1)^2} \frac{(1a_1)^2}{(1a_1)^2 (1a_2)^2 (1b_1)^2} \frac{(1a_1)^2}{(1a_1)^2 (2a_1)^2 (3a_1)^2 (4a_1)^2 (5a_1) (1b_2)^2 (1b_1)} \frac{(1a_1)^2}{(1a_1)^2 (1a_1)^2 (1a_2)^2 (1a_1)} \frac{(1a_2)^2}{(1a_1)^2 (1a_2)^2 (1a_1)^2} \frac{(1a_1)^2}{(1a_1)^2 (1a_2)^2 (1a_1)^2} \frac{(1a_2)^2}{(1a_1)^2 (1a_2)^2 (1a_1)^2} \frac{(1a_2)^2}{(1a_2)^2 (1a_1)^2 (1a_2)^2 (1a_2)^2} \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2} \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2} \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2} \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2} \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2} \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 \frac{(1a_2)^2}{(1a_2)^2 (1a_2)^2 (1a_2)^2 (1a_2)^2 ($	$\begin{array}{c} (2a_{1})^{2}(3a_{1})^{2}(4a_{1})^{2}(1b_{2})^{2}(1b_{1})^{2} & {}^{1}A_{1} & C-H = 2.06 \\ C-Li = 3.40 \\ C-Be = 2.83 \\ e^{2}(2a_{1})^{2}(3a_{1})^{2}(4a_{1})^{2}(1b_{2})^{2}(1b_{1})^{2} & {}^{1}A_{1} & C-H = 2.04 \\ C-Be = 2.83 \\ e^{2}(2a_{1})^{2}(3a_{1})^{2}(4a_{1})^{2}(5a_{1})(1b_{2})^{2}(1b_{1}) & {}^{3}B_{1} & C-H = 2.04 \\ C-Be = 3.12 \\ \hline H_{n} \end{array}$	$\begin{array}{c} (2a_{1})^{2}(3a_{1})^{2}(4a_{1})^{2}(1b_{2})^{2}(1b_{1})^{2} & \stackrel{1}{} $

Table 2. Relevant results of the calculations

Table 3. Some results (in a.u.) for CH₂ states

	A		В		С		D		
	³ B ₁	¹ A ₁	³ B ₁	¹ A ₁	$^{3}B_{1}$	¹ A ₁	$^{3}B_{1}$	¹ A ₁	$\operatorname{Exp}({}^{3}B_{1})^{a}$
Total energy	- 38.904	- 38.865	- 38.9136	- 38.8620	- 38.893	- 38.843	- 38.9230	- 38.8695	
HCH angle	1 29 °	90°	130.4°	106.5°	133°	111°	130°	105°	136°
CH distance	2.11	2.21	2.03	2.09			2.02	2.07	2.02

A Ref. [8]; B Ref. [10]; C Ref. [9]; D our results.

Н∕↓

^a See Refs. reported in [10].

related to the contribution of *p*-orbitals of Be to the molecular bond. In the same Table are reported, as a check, the results of a SCF calculation for both states on an atomic basis obtained from that reported in Table 1 by dropping out the p_x orbitals from Be and H. The total energies for these states obtained in such a way are respectively -53.56280 and -53.37329 a.u. An SCF calculation for ${}^{3}B_{1}$ state of CH₂ without the p_x orbitals on H gives -38.92174 a.u. From these results the π -stabilization effect seems to be confirmed.

In CH₂Li⁻ the 1 b_1 orbital has a very small positive orbital energy in ${}^{1}A_1$ and ${}^{3}B_1$ states; therefore we have not considered this molecule further.

In Table 5 the results for the energy differences between the ground states of CH_2Li^- and CH_2Be and some types of dissociation products are reported. As it can be seen, the first molecule is not stable with respect to the most probable type of dissociation. For CH_2Be the result shows a decidedly stable triplet ground state and a very small energy in the formation of the lowest singlet from the ground state of the fragments. However, if one considers the most probable dissociation products of this last state ($CH_2({}^{1}A_1) + Be({}^{1}S)$), one can see that this also appears to be stable with respect to them. Therefore, for these states, we have considered it to be worthwhile to obtain a rough estimate of the dissociation energy. For that,

	${}^{3}B_{1}{}^{a}$	$^{3}B_{1}^{b}$		${}^{3}B_{1}{}^{a}$	³ B ₁ ^b	${}^{i}A_{1}{}^{a}$	¹ A ₁ ^b
	5a1	5 <i>a</i> ₁		161	1b1	1 <i>b</i> ₁	1b ₁
S_{C}^{1}	0.000309	0.000312	$X^1_{\rm C}$	0.179646	0.195133	0.133520	0.177781
$S_{\rm C}^{\tilde{2}}$	0.014646	0.014785	$X_{\rm C}^2$	0.798514	0.897570	0.580589	0.907940
$S_{\rm C}^{3}$	0.035444	0.035801	$X_{\rm Be}^1$	0.068383		0.133149	
$S_{\rm C}^4$	-0.166102	-0.164418	$X_{\rm Be}^2$	0.192419		0.469425	
$S_{\rm Be}^1$	-0.001614	-0.001574	$X_{\rm H1 + H2}$	0.019358		0.016916	
S_{Be}^2	-0.066262	-0.064697	3	-0.376837	-0.379328	-0.261785	-0.208607
S_{Be}^3	-0.157383	-0.153405					
$S_{\rm Be}^4$	-0.852606	-0.835491					
S_{H1+H2}^{1}	0.017327	0.020109					
S_{H1+H2}^2	0.099055	0.107842					
Y_{H1-H2}	-0.002028	-0.002497					
$Z_{\rm C}^1$	0.039022	-0.040287					
$Z_{\rm C}^{\rm 2}$	-0.153718	-0.155190					
$Z_{\rm Be}^{\bar{1}}$	0.147593	0.152356					
$Z_{\rm Be}^2$	0.519921	0.534597					
Z_{H1+H2}	~0.001067	-0.000450					
8	-0.308656	-0.313215					

Table 4. MO's and energies for relevant orbitals of ${}^{3}B_{1}$ and ${}^{1}A_{1}$ CH₂Be states

^a With the p_x atomic orbitals on Be and H.

^b Without the p_x atomic orbitals on Be and H.

Table 5. SCF equilibrium energy differences

		ΔE kcal/mole
$CH_2(^3B_1) + Li + e$	$e^- \longrightarrow CH_2Li^-$	+ 38.96
$CH_2({}^3B_1) + Li^-$	$\longrightarrow CH_2Li^-$	+14.37
$CH_2(^3B_1) + Be$	$\longrightarrow CH_2Be({}^1A_1)$	- 3.22
$CH_{2}^{-}(^{2}B_{1}) + Li$	$\longrightarrow CH_2Li^{-1}$	- 23.09
$\operatorname{CH}_{2}({}^{1}A_{1}) + \operatorname{Be}$	$\longrightarrow CH_2 Be({}^1A_1)$	- 36.75
$\mathrm{CH}_2(^{3}B_1) + \mathrm{Be}$	$\longrightarrow CH_2Be(^3B_1)$	- 50.26

two main terms must be added to the energy difference that has been calculated: the zero point energy difference between the compound and the dissociation fragments, and the extra-correlation term.

The calculation of the normal frequencies leading to the evaluation of the zero point energy must be made on the basis of some assumption for the potential energy. For the ${}^{1}A_{1}$ of CH₂Be and for ${}^{3}B_{1}$ of CH₂, two different formulations have been made for this quantity. The first corresponding to the valence forces scheme and the second by coupling the C-H stretchings among themselves and, in CH₂Be, the planar bendings among themselves. For CH₂Be ${}^{3}B_{1}$ we have considered the valence forces scheme and the coupling between the planar bendings, because of the negligible coupling of the two C-H stretchings. The normal frequencies obtained in such a way are reported in Table 6 with the related results for zero point energy.

Since the extra-correlation energy is certainly negative, the sum of the two terms calculated in Table 5 and 6 furnishes a lower bound for the bond energy. In our case one obtains ~ -46.0 and +0.5 kcal/mole for ${}^{3}B_{1}$ and ${}^{1}A_{1}$ respectively.

	CH ₂ Be		CH ₂	CH ₂		
	${}^{1}A_{1}^{a}$	¹ A ₁ ^b	${}^{3}B_{1}{}^{a}$	${}^{3}B_{1}{}^{c}$	${}^{3}B_{1}{}^{a}$	${}^{3}B_{1}{}^{b}$
1. $v_{\rm CH}^d$	3217	3212	3236	3217		
2. v _{сн}	3360	3367	3355	3355	3419	3438
3. V _{CBe}	1043	1043	1023	1023		
4. v _{HCH}	1870	1651	1941	1969	1215	1215
5. VHCBe	463	444	460	461		
6. v _{CBe⊥}	735	735	945	945		
$\frac{1}{2}\Sigma hv^e$	15.30	14.93	15.62	15.67	11.24	11.24
^a "Valenc	^d cm ¹ .					
^b With ac	^e kcal/mole.					

Table 6. Normal frequencies and zero point energy for ${}^{1}A_{1}$ and ${}^{3}B_{1}$ states of CH₂Be and CH₂ (${}^{3}B_{1}$)

^e With added coupling terms 4–5.

One can see that the triplet state results to be bound, while for ${}^{1}A_{1}$ a possible stability whith respect to the most stable dissociation products, should be merely attributed to the extra-correlation effect.

From the same calculations it is possible to evaluate the entropy contribution to the Free Energy of formation ΔF° for the same two states, related to the vibrational part of the partition function. The calculations show that these contributions are of the order of +0.09 kcal/mole for both states *i.e.* practically negligible in comparison with the rotational and translational ones. The total values for $T\Delta S^{\circ}$ are respectively -5.96 and -5.85 kcal/mole for ${}^{1}A_{1}$ and ${}^{3}B_{1}$ states.

As a conclusion, one may deduce that of the two molecules that have been considered, only CH₂Be is stable in a triplet ground state and it presents a singlet state whose stability, if it exists, is very small.

Acknowledgements. The authors wish to thank Prof. G. Cainelli for suggesting the problem and Prof. R. Moccia for many useful discussions on the subject. The kind collaboration of Prof. D. J. David for employment of the IBMOL program has been very appreciated by the authors.

References

- 1. Cainelli, G.: Private communication
- 2. Huzinaga, S.: Approximate atomic functions. Division of Theoretical Chemistry, University of Alberta (1971)
- 3. Dunning, T.H.: J. Chem. Phys. 53, 2823 (1970); 55, 716 (1971)
- 4. Neumann, D., Moskowitz, J. W.: J. Chem. Phys. 49, 2056 (1968)
- 5. Kaufman, J. J., Sachs, L. M.: J. Chem. Phys. 51, 2992 (1969)
- 6. Kaufman, J. J., Sachs, L. M.: J. Chem. Phys. 52, 3534 (1970)
- 7. Kari, R. E., Csizmadia, I. G.: J. Chem. Phys. 50, 1443 (1969)
- 8. Foster, J. M., Boys, S. F.: Rev. Mod. Phys. 32, 305 (1960)
- 9. Harrison, J.F., Allen, L.C.: J. Am. Chem. Soc. 91, 807 (1969)
- 10. O'Neil, S. V., Schaefer III, H. F., Bender, C. F.: J. Chem. Phys. 55, 162 (1971)
- 11. Herzberg, G.: Molecular Spectra and Molecular Structure, Vol. II, Chapter II. New York: Van Nostrand 1956

Dr. U. Lamanna Istituto di Chimica Analitica Via Amendola, 173 I-70126 Bari, Italy